CIv6-SBD Solution Proposal: Geometric-Topological Structural Break Detection
CIv6-SBD Solution Proposal: Geometric-Topological Structural Break Detection
π§ Updated Implementation Plan (Aligned with ADIA Challenge + Topological Reasoning Engine)
π§ Overview
This solution expands the original proposal by integrating concrete code from a working topological reasoning notebook. It aligns directly with the ADIA Lab Structural Break Detection challenge and operationalizes the CIv6 hypothesis through latent geometry and attention topology.
1. Preprocessing and ECA Encoding
Input
X_train
: Pandas DataFrame, indexed byid
, withvalue
andperiod
columns.y_train
: Boolean labels indicating structural breaks.X_test
: List of test DataFrames.
Transformation Pipeline
-
Symbolic Encoding
- Convert each time series segment (pre/post boundary) into symbolic binary strings.
- Use delta-sign encoding or permutation-based symbolic embedding.
-
ECA Evolution
- Apply Elementary Cellular Automata (e.g. Rule 110) to each binary sequence.
- Run for 32β64 time steps.
- Flatten 2D evolution into token-like input strings.
# Example: run_eca function
RULE_MAPS = {
110: {f"{i:03b}": b for i, b in enumerate(f"{110:08b}"[::-1])}
}
def run_eca(initial_bits, rule=110, steps=32):
rule_map = RULE_MAPS[rule]
current = ''.join(initial_bits)
history = [current]
for _ in range(steps):
padded = '0' + current + '0'
next_state = ''.join(rule_map[padded[i:i+3]] for i in range(len(current)))
history.append(next_state)
current = next_state
return history
2. Model: Topological Attention Analyzer
Model Architecture
-
Use a Transformer model capable of outputting
attentions
and hiddenembeddings
.- Pretrained options:
GPT-2
,Qwen2.5
, orTransformerECA
(if symbolically trained).
- Pretrained options:
Core Modules
- Semantic Loop Monitor
def extract_cycles_and_log_wilson(head_idx, attn_matrix, tokens, threshold=0.05):
import networkx as nx
import numpy as np
A = attn_matrix[head_idx].cpu().numpy()
idx = {t: i for i, t in enumerate(tokens)}
G = nx.DiGraph()
for i in range(len(tokens)):
for j in range(len(tokens)):
if A[i, j] > threshold:
G.add_edge(tokens[i], tokens[j], weight=A[i, j])
cycles = [c for c in nx.simple_cycles(G) if 3 <= len(c) <= 6]
def log_wilson_loop(cycle):
return sum(np.log(A[idx[s], idx[t]] + 1e-12) for s, t in zip(cycle, cycle[1:] + cycle[:1]))
return [(cycle, log_wilson_loop(cycle)) for cycle in cycles]
- Holonomy Analyzer
def compute_holonomy_spectrum(cycle, Q, K, token_idx):
import torch, numpy as np
H = torch.eye(Q.shape[-1])
for s, t in zip(cycle, cycle[1:] + cycle[:1]):
i, j = token_idx[s], token_idx[t]
qi = Q[i].unsqueeze(1)
kj = K[j].unsqueeze(0)
transport = qi @ kj
H = transport @ H
eigvals = torch.linalg.eigvals(H).cpu().numpy()
return eigvals
-
Topological Divergence Detector
-
Compare:
- Loop energy stats (mean, max, count)
- Eigenvalue spectrum: dispersion, real-imag range
- Use statistical distance (e.g., cosine/Mahalanobis) to assess change
-
-
Entropy Divergence Tracker
- Use attention matrices to compute entropy per token:
def compute_attention_entropy(attn_matrix):
import scipy.stats
entropy_per_head = []
for head_attn in attn_matrix:
probs = head_attn / head_attn.sum(axis=-1, keepdims=True)
entropy = scipy.stats.entropy(probs, axis=-1)
entropy_per_head.append(entropy.mean())
return entropy_per_head
3. Detection Logic
Break Score Computation
-
Define break score as:
- Drop in mean loop energy
- Spectral divergence (eigenvalue distance)
- Entropy jump or FIM curvature collapse
-
Can be a trained classifier or a rule-based scoring function.
Output
- ROC-AUC compatible structural break scores β [0, 1]
4. Evaluation Protocol (ADIA-Aligned)
- Apply the full pipeline to each training ID.
- Extract topological metrics pre/post.
- Train a shallow classifier or compute thresholded break score.
- Use
y_train
for supervised evaluation. - Apply trained detector to
X_test
(submission-ready).
π CIv6 System View
Time Series
ββΆ Symbolic Encoding (delta/permutation)
ββΆ ECA Evolution (Rule 110)
ββΆ Transformer Attention Probing
ββΆ Loop Energy Analyzer
ββΆ Holonomy + Curvature Spectrum
ββΆ Entropy/FIM Divergence
ββΆ Structural Break Scoring
π§ͺ Implementation Modules to Build
run_eca()
β Evolve bit sequencesextract_cycles_and_log_wilson()
β Detect closed attention pathscompute_holonomy_spectrum()
β Eigenvalues from Q/K loop transportcompare_pre_post_topology()
β Vector of topological metricsstructural_break_score()
β Final ROC-compatible scalar
β Ready for Prototyping
This proposal is now concretely aligned with:
- The ADIA Lab challenge schema
- Transformer latent state observables
- Geometric-topological signal tracking
- CIv6 cybernetic consistency modeling
It is fully modular and ready to be integrated into the ADIA baseline notebook.