Cybernetic Intelligence

An open exploration of viable human-AI systems.

View the Project on GitHub algoplexity/cybernetic-intelligence

CIv6-SBD Solution Proposal: Geometric-Topological Structural Break Detection

🚧 Updated Implementation Plan (Aligned with ADIA Challenge + Topological Reasoning Engine)

🧠 Overview

This solution expands the original proposal by integrating concrete code from a working topological reasoning notebook. It aligns directly with the ADIA Lab Structural Break Detection challenge and operationalizes the CIv6 hypothesis through latent geometry and attention topology.


1. Preprocessing and ECA Encoding

Input

Transformation Pipeline

  1. Symbolic Encoding

    • Convert each time series segment (pre/post boundary) into symbolic binary strings.
    • Use delta-sign encoding or permutation-based symbolic embedding.
  2. ECA Dynamics via TransformerECA / Chaos Agent

    • Replace static run_eca() with dynamic symbolic evolution models:

# Step 1: Encode
symbolic_input = delta_encode(time_series_segment)

# Step 2: Generate symbolic evolution
eca_transformed = transformer_eca_model(symbolic_input)  # or chaos_agent.generate(...)

# Step 3: Use in downstream transformer probing pipeline

2. Model: Topological Attention Analyzer

Model Architecture

Core Modules

  1. Semantic Loop Monitor
def extract_cycles_and_log_wilson(head_idx, attn_matrix, tokens, threshold=0.05):
    import networkx as nx
    import numpy as np
    A = attn_matrix[head_idx].cpu().numpy()
    idx = {t: i for i, t in enumerate(tokens)}
    G = nx.DiGraph()
    for i in range(len(tokens)):
        for j in range(len(tokens)):
            if A[i, j] > threshold:
                G.add_edge(tokens[i], tokens[j], weight=A[i, j])
    cycles = [c for c in nx.simple_cycles(G) if 3 <= len(c) <= 6]

    def log_wilson_loop(cycle):
        return sum(np.log(A[idx[s], idx[t]] + 1e-12) for s, t in zip(cycle, cycle[1:] + cycle[:1]))

    return [(cycle, log_wilson_loop(cycle)) for cycle in cycles]
  1. Holonomy Analyzer
def compute_holonomy_spectrum(cycle, Q, K, token_idx):
    import torch, numpy as np
    H = torch.eye(Q.shape[-1])
    for s, t in zip(cycle, cycle[1:] + cycle[:1]):
        i, j = token_idx[s], token_idx[t]
        qi = Q[i].unsqueeze(1)
        kj = K[j].unsqueeze(0)
        transport = qi @ kj
        H = transport @ H
    eigvals = torch.linalg.eigvals(H).cpu().numpy()
    return eigvals
  1. Topological Divergence Detector

    • Compare:

      • Loop energy stats (mean, max, count)
      • Eigenvalue spectrum: dispersion, real-imag range
      • Use statistical distance (e.g., cosine/Mahalanobis) to assess change
  2. Entropy Divergence Tracker

    • Use attention matrices to compute entropy per token:
def compute_attention_entropy(attn_matrix):
    import scipy.stats
    entropy_per_head = []
    for head_attn in attn_matrix:
        probs = head_attn / head_attn.sum(axis=-1, keepdims=True)
        entropy = scipy.stats.entropy(probs, axis=-1)
        entropy_per_head.append(entropy.mean())
    return entropy_per_head

3. Detection Logic

Break Score Computation

Output


4. Evaluation Protocol (ADIA-Aligned)

  1. Apply the full pipeline to each training ID.
  2. Extract topological metrics pre/post.
  3. Train a shallow classifier or compute thresholded break score.
  4. Use y_train for supervised evaluation.
  5. Apply trained detector to X_test (submission-ready).

πŸ” CIv6 System View

Time Series
  β””β–Ά Symbolic Encoding (delta/permutation)
       β””β–Ά Symbolic Evolution via TransformerECA or Chaos Agent
            β””β–Ά Transformer Attention Probing
                  β”œβ–Ά Loop Energy Analyzer
                  β”œβ–Ά Holonomy + Curvature Spectrum
                  β”œβ–Ά Entropy/FIM Divergence
                  β””β–Ά Structural Break Scoring

πŸ§ͺ Implementation Modules to Build


βœ… Ready for Prototyping

This proposal is now concretely aligned with:

It fully leverages:

And is ready for integration into a modular notebook prototype.