CIv6-SBD Solution Proposal: Geometric-Topological Structural Break Detection
CIv6-SBD Solution Proposal: Geometric-Topological Structural Break Detection
π§ Updated Implementation Plan (Aligned with ADIA Challenge + Topological Reasoning Engine)
π§ Overview
This solution expands the original proposal by integrating concrete code from a working topological reasoning notebook. It aligns directly with the ADIA Lab Structural Break Detection challenge and operationalizes the CIv6 hypothesis through latent geometry and attention topology.
1. Preprocessing and ECA Encoding
Input
X_train
: Pandas DataFrame, indexed byid
, withvalue
andperiod
columns.y_train
: Boolean labels indicating structural breaks.X_test
: List of test DataFrames.
Transformation Pipeline
-
Symbolic Encoding
- Convert each time series segment (pre/post boundary) into symbolic binary strings.
- Use delta-sign encoding or permutation-based symbolic embedding.
-
ECA Dynamics via TransformerECA / Chaos Agent
-
Replace static
run_eca()
with dynamic symbolic evolution models:- Use TransformerECA (Burtsev et al.) to generate token sequences reflecting ECA-like evolution in latent transformer space.
- Alternatively, use the chaos-tuned generator from van Dijk lab to ensure evolution occurs at the edge of chaos.
- Introduce meta-adaptive control via Darwin-GΓΆdel Machine (Jenny Zhang et al.) to monitor and rewrite symbolic processing when inconsistency or compression collapse is detected.
-
# Step 1: Encode
symbolic_input = delta_encode(time_series_segment)
# Step 2: Generate symbolic evolution
eca_transformed = transformer_eca_model(symbolic_input) # or chaos_agent.generate(...)
# Step 3: Use in downstream transformer probing pipeline
2. Model: Topological Attention Analyzer
Model Architecture
-
Use a Transformer model capable of outputting
attentions
and hiddenembeddings
.- Pretrained options:
GPT-2
,Qwen2.5
, orTransformerECA
.
- Pretrained options:
Core Modules
- Semantic Loop Monitor
def extract_cycles_and_log_wilson(head_idx, attn_matrix, tokens, threshold=0.05):
import networkx as nx
import numpy as np
A = attn_matrix[head_idx].cpu().numpy()
idx = {t: i for i, t in enumerate(tokens)}
G = nx.DiGraph()
for i in range(len(tokens)):
for j in range(len(tokens)):
if A[i, j] > threshold:
G.add_edge(tokens[i], tokens[j], weight=A[i, j])
cycles = [c for c in nx.simple_cycles(G) if 3 <= len(c) <= 6]
def log_wilson_loop(cycle):
return sum(np.log(A[idx[s], idx[t]] + 1e-12) for s, t in zip(cycle, cycle[1:] + cycle[:1]))
return [(cycle, log_wilson_loop(cycle)) for cycle in cycles]
- Holonomy Analyzer
def compute_holonomy_spectrum(cycle, Q, K, token_idx):
import torch, numpy as np
H = torch.eye(Q.shape[-1])
for s, t in zip(cycle, cycle[1:] + cycle[:1]):
i, j = token_idx[s], token_idx[t]
qi = Q[i].unsqueeze(1)
kj = K[j].unsqueeze(0)
transport = qi @ kj
H = transport @ H
eigvals = torch.linalg.eigvals(H).cpu().numpy()
return eigvals
-
Topological Divergence Detector
-
Compare:
- Loop energy stats (mean, max, count)
- Eigenvalue spectrum: dispersion, real-imag range
- Use statistical distance (e.g., cosine/Mahalanobis) to assess change
-
-
Entropy Divergence Tracker
- Use attention matrices to compute entropy per token:
def compute_attention_entropy(attn_matrix):
import scipy.stats
entropy_per_head = []
for head_attn in attn_matrix:
probs = head_attn / head_attn.sum(axis=-1, keepdims=True)
entropy = scipy.stats.entropy(probs, axis=-1)
entropy_per_head.append(entropy.mean())
return entropy_per_head
3. Detection Logic
Break Score Computation
-
Define break score as:
- Drop in mean loop energy
- Spectral divergence (eigenvalue distance)
- Entropy jump or FIM curvature collapse
-
Can be a trained classifier or a rule-based scoring function.
Output
- ROC-AUC compatible structural break scores β [0, 1]
4. Evaluation Protocol (ADIA-Aligned)
- Apply the full pipeline to each training ID.
- Extract topological metrics pre/post.
- Train a shallow classifier or compute thresholded break score.
- Use
y_train
for supervised evaluation. - Apply trained detector to
X_test
(submission-ready).
π CIv6 System View
Time Series
ββΆ Symbolic Encoding (delta/permutation)
ββΆ Symbolic Evolution via TransformerECA or Chaos Agent
ββΆ Transformer Attention Probing
ββΆ Loop Energy Analyzer
ββΆ Holonomy + Curvature Spectrum
ββΆ Entropy/FIM Divergence
ββΆ Structural Break Scoring
π§ͺ Implementation Modules to Build
transformer_eca_model()
β symbolic evolution engineextract_cycles_and_log_wilson()
β Detect closed attention pathscompute_holonomy_spectrum()
β Eigenvalues from Q/K loop transportcompare_pre_post_topology()
β Vector of topological metricsstructural_break_score()
β Final ROC-compatible scalardgm_rewriter()
β Optional: trigger reflective reconfiguration upon conceptual collapse
β Ready for Prototyping
This proposal is now concretely aligned with:
- The ADIA Lab challenge schema
- Transformer latent state observables
- Geometric-topological signal tracking
- CIv6 cybernetic consistency modeling
It fully leverages:
- TransformerECA as an evolution engine
- Chaos-theoretic tuning from van Dijk
- Reflective rewrite logic from DGM
And is ready for integration into a modular notebook prototype.