An open exploration of viable human-AI systems.
View the Project on GitHub algoplexity/cybernetic-intelligence
Title: From Theory to Submission: Implementing CIv8r Structural Break Detection on ADIA Challenge Data (Colab Edition)
This internal whitepaper translates the theoretical constructs of the CIv8r hypothesis suite—CIv8-ECA, CIv8r-LLM, and CIv8-unified—into a concrete, reproducible, and high-performance implementation for the ADIA Lab Structural Break Challenge.
Repos:
eca-rule-transformglenford-symbolic-tsRepos:
timeseries-transformertopo-mlRepos:
tsflexEach module integrates key GitHub repositories:
| Module | Repository | Source | Used For |
|---|---|---|---|
symbolic_features.py |
eca-rule-transform, glenford-symbolic-ts |
Braun et al. | ECA motif extraction |
latent_encoder.py |
timeseries-transformer |
Shani et al. | Transformer-based latent drift |
topo_analysis.py |
topo-ml (UMAP) |
Walch et al. | Latent curvature divergence |
fusion_score.py |
tsflex |
Predict IDLab | Feature fusion and ROC optimization |
orchestration_server.py |
Custom | Algoplexity | Task scheduler & checkpointing |
period column).crunch.test()| Phase | Depends On | Description |
|---|---|---|
| Baseline Forking & Setup | None | Reproduce and verify ADIA starter baseline |
| Symbolic Module | Baseline | Implement ECA rule encoding, motif deltas |
| Latent Module | Symbolic Module | Train transformer + derive latent deltas |
| Topological Divergence | Latent Module | Add UMAP/curvature-based fault geometry |
| Unified Fusion | Symbolic + Latent | Score fusion model with symbolic-latent alignment |
| ROC Optimization | Unified Fusion | Tune classifier thresholds, improve AUC |
| Final Submission Wrapping | All modules | Convert to single submission-ready notebook with backup |
| Component | Repo | Paper | Used For |
|---|---|---|---|
| Symbolic ECA | eca-rule-transform |
Braun et al. | ECA motif deltas |
| Grammar Extraction | glenford-symbolic-ts |
Shani & Braun | Symbolic sequences |
| Latent Attention | timeseries-transformer |
Shani et al. | Latent flows |
| Topological Divergence | topo-ml |
Walch et al. | Curvature shifts |
| Feature Alignment | tsflex |
IDLab | Time-windowed fusion |
| ADIA Baseline | crunchdao/quickstarters |
ADIA Lab | Base pipeline |
train() and infer() APIEnd of Whitepaper