Cybernetic Intelligence

An open exploration of viable human-AI systems.

View the Project on GitHub algoplexity/cybernetic-intelligence

Internal Technical Whitepaper

Title: From Theory to Submission: Implementing CIv8r Structural Break Detection on ADIA Challenge Data (Colab Edition)


1. Purpose & Implementation Goals

This internal whitepaper translates the theoretical constructs of the CIv8r hypothesis suite—CIv8-ECA, CIv8r-LLM, and CIv8-unified—into a concrete, reproducible, and high-performance implementation for the ADIA Lab Structural Break Challenge.

Goals:


2. Architecture Overview

A. Symbolic Pipeline (CIv8-ECA Layer)

B. Latent Embedding Pipeline (CIv8r-LLM Layer)

C. Unified Scoring Layer (CIv8-unified)


3. Repository Integration Map

Each module integrates key GitHub repositories:

Module Repository Source Used For
symbolic_features.py eca-rule-transform, glenford-symbolic-ts Braun et al. ECA motif extraction
latent_encoder.py timeseries-transformer Shani et al. Transformer-based latent drift
topo_analysis.py topo-ml (UMAP) Walch et al. Latent curvature divergence
fusion_score.py tsflex Predict IDLab Feature fusion and ROC optimization
orchestration_server.py Custom Algoplexity Task scheduler & checkpointing

4. Module-by-Module Implementation

4.1 symbolic_features.py

4.2 latent_encoder.py

4.3 topo_analysis.py

4.4 fusion_score.py


5. Train/Infer Adaptation

train()

infer()


6. Evaluation Strategy


7. Task Sequence for Implementation

Phase Depends On Description
Baseline Forking & Setup None Reproduce and verify ADIA starter baseline
Symbolic Module Baseline Implement ECA rule encoding, motif deltas
Latent Module Symbolic Module Train transformer + derive latent deltas
Topological Divergence Latent Module Add UMAP/curvature-based fault geometry
Unified Fusion Symbolic + Latent Score fusion model with symbolic-latent alignment
ROC Optimization Unified Fusion Tune classifier thresholds, improve AUC
Final Submission Wrapping All modules Convert to single submission-ready notebook with backup

8. Appendix A: GitHub Citation Table

Component Repo Paper Used For
Symbolic ECA eca-rule-transform Braun et al. ECA motif deltas
Grammar Extraction glenford-symbolic-ts Shani & Braun Symbolic sequences
Latent Attention timeseries-transformer Shani et al. Latent flows
Topological Divergence topo-ml Walch et al. Curvature shifts
Feature Alignment tsflex IDLab Time-windowed fusion
ADIA Baseline crunchdao/quickstarters ADIA Lab Base pipeline

9. Appendix B: Submission Checklist


End of Whitepaper