πŸ“„ AS-IS SYSTEM WORKFLOW DOCUMENTATION

This document captures the current architecture of the long-document classification and information extraction system, as extracted from code_summary.txt. It includes:

  • An overview of the as-is pipeline
  • A detailed text-based component diagram
  • A Component–Responsibility–Collaborator (CRC) table
  • Notes for managing risk-aware incremental upgrades
  • A discussion on handling extremely long documents with modern architectures

🧹 OVERVIEW OF CURRENT WORKFLOW

The system processes legal and compliance documents (often PDFs) to classify them, extract relevant named entities, and detect the presence of digital or visual signatures. It is built in modular components using both traditional ML and deep learning, relying on caching, multiprocessing, and format-specific processing pipelines.


πŸ”— TEXT-BASED WORKFLOW DIAGRAM

                           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                           β”‚    Input PDF Files     β”‚
                           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                        β”‚
                                [1] PDF LOADING
                                        β”‚
                β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                β”‚                                                β”‚
     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
     β”‚ OCR Pipeline       β”‚                         β”‚ Digital Signature Check β”‚
     β”‚ (tesserocr +       β”‚                         β”‚ (PDF bytes + regex)     β”‚
     β”‚  pdf2texts)        β”‚                         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                      β”‚
                β”‚                                                β–Ό
       β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚ Chunking        β”‚                         β”‚ Visual Signature Detector β”‚
       β”‚ (semchunk)      β”‚                         β”‚ (signitractor ONNX)      β”‚
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚                                                  β–Ό
       β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚ Embedding Module β”‚                         β”‚  Signature Classifier  β”‚
       β”‚ (RoBERTa, TF-IDF)β”‚                         β”‚  (signitector LGBM)    β”‚
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚                                                                
       β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                                            
       β”‚ Chunk Classification     β”‚                                            
       β”‚ (RoBERTa + LSTM fusion)  β”‚                                            
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                            
              β”‚                                                                
       β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                                                   
       β”‚ Entity Extraction β”‚                                                   
       β”‚ (TokenClassifier) β”‚                                                   
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                                                   
                β”‚                                                              
           β”Œβ”€β”€β”€β–Όβ”€β”€β”€β”                                                         
           β”‚  Cache  β”‚                                                         
           β”‚ + Persistβ”‚                                                        
           β””β”€β”€β”€β”€β”€β”€β”€β”˜                                                         

πŸ“‹ COMPONENT–RESPONSIBILITY–COLLABORATOR (CRC) TABLE

Component Responsibilities Collaborators
PDF Loader Load PDF files, manage byte-level access Signature Checker
OCR Pipeline Convert scanned or image-based PDFs into text using Tesseract Chunker, Visual Signature Detector
Digital Sig. Check Check for cryptographic digital signatures in PDF structure PDF Loader
Visual Sig. Detect Detect presence of visual signature bounding boxes using ONNX model OCR, Signature Classifier
Signature Classifier Classify detected visual regions as true/false signatures Visual Detector
Chunker Split full text into semantically coherent chunks (e.g. ~512 tokens) OCR, Embedding Module
Embedding Module Generate chunk-level representations using RoBERTa, TF-IDF Chunker, Classifier
Chunk Classifier Classify document using embeddings + LSTM fusion Embedding, Cache
Entity Extractor Named entity recognition using RoBERTa-style token classification Chunker
Cache Manager Cache all intermediate outputs on disk for efficiency and fault tolerance All major components

πŸ“Œ RISK-MANAGED UPGRADE GUIDANCE (by Component)

Upgrade Target Risk Level Recommendation
PDF Loader + OCR Medium Replace with unified MLLM-based model (e.g., Donut, MMDocReader)
Signature Detection High Maintain for now, refactor to MLLM only after testing
Chunking + Embedding Medium Replace with long-context model inference over entire doc
Chunk Classifier Low Easy to refactor into FusionNet-style or MoE classifier
Entity Extractor Low Migrate to InstructNER or few-shot NER
Caching Framework Low Can retain as-is; decouples stability from model upgrades

♻️ HANDLING EXTREMELY LONG DOCUMENTS (MODERN SOLUTIONS)

To address long (potentially infinite) document lengths that exceed standard transformer context windows, modern 2025-era models offer viable alternatives:

βœ… Long-Context Transformers

Use foundation models like:

  • Claude 3 Opus, Command R+, GPT-4.5, Mistral-7B-Long, or Phi-3-Long
  • Native context lengths from 32K to 256K+ tokens

Benefits:

  • Eliminate manual chunking
  • Preserve cross-section dependencies in classification
  • Allow direct classification, extraction, or summarization across the full document

βœ… Recurrent Memory-Augmented Models

If full sequence input isn’t feasible:

  • Use RetNet, RWKV, or Memorizing Transformers with chunkwise recurrence

βœ… Compression-Aware Planning

Hybrid techniques:

  • Use semantic hashing or symbolic sketching to reduce context
  • Augment with retrieval-based augmentation over the entire doc corpus

βœ… Agentic Refactor with Memory

The existing agentic orchestrator can manage:

  • Long-document streaming (via a memory-augmented plan)
  • Caching intermediate judgments
  • Chunk-based voting with justification replay

These strategies allow you to shift from token-limited classification to full-document, multi-pass comprehension and labeling.


βœ… Summary

This modular architecture is highly swappable, meaning a gradual migration to newer models can be achieved without full system disruption. The first candidates for upgrade include:

  • Long-context embedding + classifier to replace chunk+LSTM
  • Replacing OCR + chunker with layout-aware transformer
  • Swapping entity extraction with instruction-tuned few-shot LLM-based NER

By combining modern long-context architectures with your agentic wrapping approach, the system can evolve into a robust, streaming-friendly platform for industrial-scale document intelligence.